Periodic solutions of nerve impulse equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Solutions of Nerve Impulse Equations

This paper continues the discussion of singular perturbation solutions of nerve impulse equations begun in [1]. Phase space analysis is used to study a general model of a biological process (e.g., nerve impulse, heartbeat, muscle contraction) consisting of a differential equation coupled with / "slow" and m "fast" equations (Eq. 4.1). The slow [fast] equations correspond to subprocesses whose r...

متن کامل

Periodic Wave Shock solutions of Burgers equations

In this paper we investigate the exact peroidic wave shock solutions of the Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parametr ε and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock type solution for the cauchy problem of the in...

متن کامل

Periodic Solutions of Lagrange Equations

Nontrivial periodic solutions of Lagrange Equations are investigated. Sublinear and superlinear nonlinearity are included. Convexity assumptions are significiently relaxed. The method used is the duality developed by the authors.

متن کامل

Positive Periodic Solutions of Neutral Functional Differential Equations with a Parameter and Impulse

In this paper, we consider first-order neutral differential equations with a parameter and impulse in the form of d dt [x(t)− cx(t− γ)] = −a(t)g(x(h1(t)))x(t) + λb(t)f ` x(h2(t)) ́ , t 6= tj ; ∆ ˆ x(t)− cx(t− γ) ̃ = Ij ` x(t) ́ , t = tj , j ∈ Z. Leggett-Williams fixed point theorem, we prove the existence of three positive periodic solutions.

متن کامل

Periodic solutions for evolution equations ∗

We study the existence and uniqueness of periodic solutions for evolution equations. First we analyze the one-dimensional case. Then for arbitrary dimensions (finite or not), we consider linear symmetric operators. We also prove the same results for non-linear sub-differential operators A = ∂φ where φ is convex.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1977

ISSN: 0022-247X

DOI: 10.1016/0022-247x(77)90235-9